ON EMPIRICAL BAYES SIMULTANEOUS SELECTION PROCEDURES FOR COMPARING NORMAL POPULATIONS WITH A STANDARD by Shanti S. Gupta Purdue University and TaChen Liang Wayne State University Technical Report #96-25C ### **PURDUE UNIVERSITY** CENTER FOR STATISTICAL DECISION SCIENCES AND DEPARTMENT OF STATISTICS DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited DTIC QUALITY INSPECTED 1 19960909 081 ## ON EMPIRICAL BAYES SIMULTANEOUS SELECTION PROCEDURES FOR COMPARING NORMAL POPULATIONS WITH A STANDARD by Shanti S. Gupta and Tac Purdue University TaChen Liang Wayne State University Technical Report #96-25C Department of Statistics Purdue University West Lafayette, IN USA May 1996 DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited # ON EMPIRICAL BAYES SIMULTANEOUS SELECTION PROCEDURES FOR COMPARING NORMAL POPULATIONS WITH A STANDARD by Shanti S. Gupta and TaChen Liang Department of Statistics Department of Mathematics Purdue University Wayne State University West Lafayette, IN 47907 Detroit, MI 48202 #### Abstract In this paper, we derive statistical selection procedures to partition k normal populations into "good" or "bad" ones, respectively, using the nonparametric empirical Bayes approach. The relative regret risk of a selection procedure is used as a measure of its performance. We establish the asymptotic optimality of the proposed empirical Bayes selection procedures and investigate the associated rates of convergence. Under a very mild condition, the proposed empirical Bayes selection procedures are shown to have rates of convergence of order close to $O(k^{-\frac{1}{2}})$ where k is the number of populations involved in the selection problem. With further strong assumptions, the empirical Bayes selection procedures have rates of convergence of order $O(k^{-\frac{\alpha(r-1)}{2r+1}})$, where $1 < \alpha < 2$ and r is an integer greater than 2. AMS 1991 Subject Classification: 62F07, 62C12. Keywords and Phrases: Asymptotically optimal, comparison with a standard, empirical Bayes, rate of convergence, simultaneous selection, relative regret risk. ^{*}This research was supported in part by US Army Research Office, Grant DAAH04-95-1-0165 at Purdue University. #### 1. Introduction Consider k independent normal populations $\pi_i \equiv N(\theta_i, \sigma^2)$, i = 1, ..., k, with unknown means $\theta, ..., \theta_k$, respectively, and a common variance σ^2 . Let θ_0 denote a standard or a control. A population π_i is said to be good if $\theta_i \geq \theta_0$, and bad otherwise. In certain practical situations, one may be interested in the selection of all good populations while excluding all bad populations. For example, let θ_i denote the quality level of a newly developed manufacturing process $\pi_i, i = 1, ..., k$, and θ_0 be a specified standard level. Then, one may be interested in finding out all the potential manufacturing processes for further investigation. The preceding described selection goal can also be viewed as a first step of a selection problem in which the selection goal is to select the best from among k populations provided that the best is at least as good as the specified standard level. In the literature, the problem of comparing normal populations with a control has been extensively studied by many authors. To mention a few, for example, Dunnett (1955), Gupta and Sobel (1958) and Tong (1969) have proposed and studied some natural selection procedures. Lehmann (1961) and Spjøtvoll (1972) have treated the problem using methods from the theory of testing hypothesis. Randles and Hollander (1971), Miescke (1981) and Gupta and Miescke (1985) have derived optimal procedures via minimax or Γ -minimax approaches. The purpose of this paper is to derive statistical procedures which partition the k normal populations into "good" and "bad" ones, respectively, using the empirical Bayes approach. It is assumed that the parameter θ_0 is the value of a specified standard level, and therefore is assumed to be known. The paper is organized as follows. In Section 2, the statistical model of the selection problem is introduced and a Bayes selection procedure for the selection problem is also derived. As seen in the later part of the paper, the Bayes selection procedure depends on the prior distribution. When the prior distribution is unknown, the Bayes selection procedure cannot be implemented. In such a situation, using the empirical Bayes approach and by mimicking the behavior of the Bayes selection procedure, we have developed empirical Bayes selection procedures in Section 3. The relative regret risk of an empirical Bayes selection procedure is used as a measure of the performance of this empirical Bayes selection tion procedure. We establish the asymptotic optimality of the proposed empirical Bayes selection procedures in Section 4. The rate of convergence of the relative regret risks is studied in Section 5. Under a very mild condition, the proposed empirical Bayes selection procedures have rates of convergence of order close to $O(k^{-1/2})$. With some further assumptions, the empirical Bayes selection procedures have rates of convergence of order $O(k^{-\alpha(r-1)/[2r+1]})$ where $1 < \alpha < 2$ and r > 2 is an integer. #### 2. The Selection Problem and A Bayes Selection Procedure Let X_{i1}, \ldots, X_{im} be a sample of size m taken from a normal population $\pi_i \equiv N(\theta_i, \sigma^2)$, $i=1,\ldots,k$. All samples are assumed to be mutually independent. Let $X_i = \frac{1}{m} \sum_{j=1}^m X_{ij}$ and when $m \geq 2$, let $W_k = \sum_{i=1}^k \sum_{j=1}^m (X_{ij} - X_i)^2 / [k(m-1)]$. Note that given $\theta_i, X_i \sim N(\theta_i, \frac{\sigma^2}{m})$, k(m-1) $W_k/\sigma^2 \sim \chi^2(k(m-1))$, and X_1, \ldots, X_k and W_k are mutually independent. Let $\Omega = \{ \hat{\varrho} = (\theta_1, \dots, \theta_k) | -\infty < \theta_i < \infty, i = 1, \dots, k \}$ be the parameter space, and let $\mathcal{A} = \{ \hat{\varrho} = (a_1, \dots, a_k) | a_i = 0, 1, i = 1, \dots, k \}$ be the action space. When action $\hat{\varrho}$ is taken, it means that population π_i is selected as good if $a_i = 1$, and excluded as bad if $a_i = 0$. For each $\hat{\varrho} \in \Omega$ and $\hat{\varrho} \in \mathcal{A}$, the loss function $L(\hat{\varrho}, \hat{\varrho})$ is defined to be $$L(\hat{\varrho}, \hat{\underline{a}}) = \sum_{i=1}^{k} \ell(\theta_i, a_i)$$ (2.1) and $$\ell(\theta_i, a_i) = a_i(\theta_0 - \theta_i)I(\theta_0 - \theta_i) + (1 - a_i)(\theta_i - \theta_0)I(\theta_i - \theta_0), \tag{2.2}$$ where I(x) = 1(0) if $x \ge 0$ (otherwise). Note that in (2.2), the first term is the loss due to selecting π_i as good when $\theta_i < \theta_0$, and the second term is the loss due to wrongly excluding π_i as bad when $\theta_i \ge \theta_0$. It is assumed that for each i, the parameter θ_i is a realization of a random variable Θ_i ; and $\Theta_1, \ldots, \Theta_k$ are independently distributed with a common but unknown prior distribution G. Under the preceding assumption, X_1, \ldots, X_k and W_k are mutually independent, and X_1, \ldots, X_k are identically distributed, having a marginal pdf $f(x) = \int f(x|\theta, \sigma^2) dG(\theta)$, where $f(x|\theta, \sigma^2)$ denotes the pdf of a normal $N(\theta, \frac{\sigma^2}{m})$ distribution. Let $X_i = (X_{i1}, \dots, X_{im}), i = 1 \dots k$ and $X_i = (X_1, \dots, X_k)$. Let X_i be the sample space of X_i . A selection procedure $S_i = (\delta_1, \dots, \delta_k)$ is defined to be a mapping from the sample space X_i into the product space $[0,1]^k$, such that for each $i = 1, \dots, k, \delta_i(x)$ is the probability of selecting population π_i as a good population when $X_i = X_i$ is observed. Let X_i be the class of all selection procedures. Also let X_i denote the Bayes risk associated with the selection procedure X_i . It is assumed that X_i denote the Bayes risk X_i so that the Bayes risk X_i is finite. By Fubini's theorem, a straightforward computation yields that the Bayes risk X_i can be expressed as: $$R(G, \underline{\delta}) = \sum_{i=1}^{k} R_i(G, \delta_i)$$ (2.3) and $$R_i(G, \delta_i) = \int_{\mathcal{X}} [\theta_0 - \varphi_i(\underline{x}_i)] \delta_i(\underline{x}) \prod_{j=1}^k f_j(\underline{x}_j) d\underline{x} + C$$ (2.4) where $\varphi_i(x_i) = E[\Theta_i | X_i = x_i]$: the posterior mean of Θ_i given $X_i = x_i$; $f_j(x_j)$: the marginal joint pdf of X_j , and $C = \int_{\theta_0}^{\infty} (\theta - \theta_0) dG(\theta)$. Thus, a Bayes selection procedure $\delta_B = (\delta_{B1}, \dots, \delta_{Bk})$, which minimizes the Bayes risks among all selection procedures in \mathcal{D} , is clearly given by: For each $i = 1, \dots, k$ and $x \in \mathcal{X}$, $$\delta_{Bi}(\underline{x}) = \begin{cases} 1 & \text{if } \varphi_i(\underline{x}_i) \ge \theta_0, \\ 0 & \text{otherwise.} \end{cases}$$ (2.5) Algebraic computation yields that $$\varphi_i(\underline{x}_i) \equiv x_i + \frac{\sigma^2}{m} f^{(1)}(x_i) / f(x_i) \equiv \psi_i(x_i), \qquad (2.6)$$ where $f(x_i)$ is the marginal pdf of the sample mean X_i and $f^{(1)}(x_i)$ denotes its corresponding derivative. That is, the posterior mean $\varphi_i(x_i)$ depends on x_i only through the sample mean value x_i . From (2.5) and (2.6), the *i*-th component Bayes selection procedure δ_{Bi} depends on x_i only through x_i . Therefore, (2.5) can be expressed as $$\delta_{Bi}(x_i) = \begin{cases} 1 & \text{if } \psi_i(x_i) \ge \theta_0 \\ 0 & \text{otherwise.} \end{cases}$$ $$= \begin{cases} 1 & \text{if } T_i(x_i) \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$ (2.5') where $T_i(x_i) = \frac{\sigma^2}{m} f^{(1)}(x_i) + (x_i - \theta_0) f(x_i)$. Note that $\psi_1(\cdot) = \ldots = \psi_k(\cdot)$ and $T_1(\cdot) = \ldots = T_k(\cdot)$ since X_1, \ldots, X_k are identically distributed. One can see that the posterior mean $\psi_i(x_i)$ is a continuous function in x_i ; also $\psi_i(x_i)$ is strictly increasing in x_i if the prior distribution G is non-degenerate. Let $A_1 = \{x | \psi_i(x) < \theta_0\}$ and $A_2 = \{x | \psi_i(x) \ge \theta_0\}$. Define $$a^* = \begin{cases} \sup A_1 & \text{if } A_1 \neq \phi, \\ -\infty & \text{if } A_1 = \phi. \end{cases}$$ (2.7) Note that if $A_2 \neq \phi$ and $A_1 \neq \phi$, then $-\infty < a^* < \infty$; and if $A_2 = \phi$, $a^* = \infty$. In terms of a^* , the Bayes selection procedure δ_B can be written as: $$\delta_{Bi}(x_i) = \begin{cases} 1 & \text{if } x_i \ge a^* \\ 0 & \text{otherwise.} \end{cases}$$ (2.5") Finally, the minimum Bayes risk is: $$R(G, \delta_B) = \sum_{i=1}^k R_i(G, \delta_{Bi}), \qquad (2.8)$$ and $$R_i(G, \delta_{Bi}) = \int [\theta_0 - \psi_i(x_i)] \delta_{Bi}(x_i) f(x_i) dx_i + C.$$ (2.9) In the following analysis, we consider those prior distributions G such that $\lim_{x_i \to -\infty} \psi_i(x_i) < \theta_0 < \lim_{x_i \to +\infty} \psi_i(x_i)$. Hence $A_1 \neq \phi$ and $A_2 \neq \phi$. Therefore, $-\infty < a^* < \infty$. #### 3. Empirical Bayes Selection Procedures Since the prior distribution G is unknown, it is not possible to implement the Bayes selection procedure δ_B for the selection problem at hand. However, according to the statistical model described previously, the k components share certain similarity. Therefore, the empirical Bayes approach is employed to incorporate information from among the k populations to provide robust selection procedures for each of the k component selection problems. The proposed empirical Bayes selection procedures mimick the behavior of the Bayes selection procedure δ_B . For this, the forms of (2.5') and (2.5'') provide important motivation for the construction of the empirical Bayes selection procedures. To construct the empirical Bayes selection procedures, first, we need to have estimates for f(x) and $f^{(1)}(x)$. For an integer r > 2 and for each i = 0, 1, let \mathcal{K}_i^r be the class of all Borel-measurable bounded functions vanishing outside the interval (0, 1), such that for $k_0 \in \mathcal{K}_0^r$, $$\int_0^1 y^j k_0(y) dy = \begin{cases} 1 & \text{if } j = 0, \\ 0 & \text{if } j = 1, \dots, r - 1, \\ B_1 & \text{if } j = r; \end{cases}$$ (3.1) and for $k_1 \in \mathcal{K}_1^r$, $$\int_0^1 y^j k_1(y) dy = \begin{cases} 1 & \text{if } j = 1, \\ 0 & \text{if } j = 0, 2, \dots, r - 1, \\ B_2 & \text{if } j = r. \end{cases}$$ (3.2) We may let B_3 be a positive value such that $|k_i(y)| \leq B_3$ for all $y \in (0,1)$ and i = 0, 1. Also, let h = h(k) be a decreasing function of k such that $h(k) \to 0$ as $k \to \infty$. Define $$\begin{cases} f_{ik}(X_i) = \frac{1}{(k-1)h} \sum_{\substack{j=1\\j\neq i}}^{k} k_0 \left(\frac{X_i - X_j}{h}\right), \\ f_{ik}^{(1)}(X_i) = \frac{1}{(k-1)h^2} \sum_{\substack{j=1\\j\neq i}}^{k} k_1 \left(\frac{X_i - X_j}{h}\right). \end{cases}$$ (3.3) Note that for each fixed $X_i = x_i$, $f_{ik}(x_i)$ and $f_{ik}^{(1)}(x_i)$ are consistent estimators of $f(x_i)$ and $f^{(1)}(x_i)$, respectively; see Singh (1977, 1979). When the variance σ^2 is known, for each i = 1, ..., k, let $$T_{ik}^*(X_i) = (X_i - \theta_0)f_{ik}(X_i) + \frac{\sigma^2}{m}f_{ik}^{(1)}(X_i).$$ Also, let $\{C_k^*\}$ be a sequence of positive numbers such that C_k^* is increasing in k and $C_k^* \to \infty$ as $k \to \infty$. We consider an empirical Bayes selection procedures $\delta^* = (\delta_1^*, \dots, \delta_k^*)$ defined as follows, $$\delta_{i}^{*}(X) = \delta_{i}(X_{i}, X(i)) = \begin{cases} 0 & \text{if either } (X_{i} < -C_{k}^{*}) \\ & \text{or } (|X_{i}| \leq C_{k}^{*} \text{ and } T_{ik}^{*}(X_{i}) < 0), \end{cases}$$ $$1 & \text{if either } (X_{i} > C_{k}^{*}) \\ & \text{or } (|X_{i}| \leq C_{k}^{*} \text{ and } T_{ik}^{*}(X_{i}) \geq 0), \end{cases}$$ $$(3.4)$$ where $X(i) = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_k)$. When the variance σ^2 is unknown, we estimate σ^2 by W_k . For each $i=1,\ldots,k$, let $$\tilde{T}_{ik}(X_i) = (X_i - \theta_0)f_{ik}(X_i) + \frac{W_k}{m} f_{ik}^{(1)} (X_i).$$ We then consider an empirical Bayes selection procedure $\hat{\delta} = (\hat{\delta}_1, \dots, \hat{\delta}_k)$ defined as follows, $$\hat{\delta}_{i}(\bar{X}) = \hat{\delta}_{i}(X_{i}, \bar{X}(i), W_{k}) = \begin{cases} 0 & \text{if either } (X_{i} < -C_{k}^{*}) \\ & \text{or } (|X_{i}| \leq C_{k}^{*} \text{ and } \hat{T}_{ik}(X_{i}) < 0), \\ 1 & \text{if either } (X_{i} > C_{k}^{*}) \\ & \text{or } (|X_{i}| \leq C_{k}^{*} \text{ and } \hat{T}_{ik}(X_{i}) \geq 0). \end{cases}$$ (3.5) The Bayes risk of the empirical Bayes selection procedure δ^* is: $$R(G, \delta^*) = \sum_{i=1}^{k} R_i(G, \delta_i^*)$$ (3.6) and $$R_{i}(G, \delta_{i}^{*}) = E_{i}^{*} \left[\int [\theta_{0} - \psi_{i}(x_{i})] \delta_{i}^{*}(x_{i}, X_{i}(i)) f(x_{i}) dx_{i} \right] + C$$ $$= \int [\theta_{0} - \psi_{i}(x_{i})] E_{i}^{*} \left[\delta_{i}^{*}(x_{i}, X_{i}(i)) \right] f(x_{i}) dx_{i} + C,$$ (3.7) where the expectation E_i^* is taken with respect to the probability measure generated by X(i). The Bayes risk of the empirical Bayes selection procedure $\hat{\underline{\delta}}$ is: $$R(G, \hat{\delta}) = \sum_{i=1}^{k} R_i(G, \hat{\delta}_i)$$ (3.8) and $$R_i(G,\hat{\delta}_i) = \int [\theta_0 - \psi_i(x_i)] \hat{E}_i[\hat{\delta}_i(x_i, X(i), W_k)] f(x_i) dx_i + C.$$ (3.9) where the expectation \hat{E}_i is taken with respect to the probability measure generated by $(X_i(i), W_k)$. Since δ_B is the Bayes selection procedure, for any selection procedure $\delta = (\delta_1, \dots, \delta_k)$, $R_i(G, \delta_i) - R_i(G, \delta_{B_i}) \ge 0$, $i = 1, \dots, k$ and $R(G, \delta_i) - R(G, \delta_B) \ge 0$. Define $$\rho(G, \underline{\delta}) = [R(G, \underline{\delta}) - R(G, \underline{\delta}_B)] / R(G, \underline{\delta}_B). \tag{3.9}$$ $\rho(G, \underline{\delta})$ is called as the relative regret risk of the selection procedure $\underline{\delta}$ compared with the Bayes selection procedure $\underline{\delta}_B$. The relative regret risk $\rho(G, \underline{\delta})$ is used to measure the performance of the selection procedure $\underline{\delta}$. **Definition 3.1.** (a) A selection procedure $\underline{\delta}$ is said to be asymptotically optimal if $\rho(G,\underline{\delta}) \to 0$ as $k \to \infty$. (b) A selection procedure $\underline{\delta}$ is said to be asymptotically optimal of order $\{\alpha_k\}$ if $\rho(G,\underline{\delta}) = O(\alpha_k)$ where $\{\alpha_k\}$ is a sequence of decreasing positive numbers such that $\alpha_k \to 0$ as $k \to \infty$. The asymptotic optimality of the empirical Bayes selection procedures δ^* and $\hat{\delta}$ will be investigated in the next two sections. #### 4. Asymptotic Optimality of the Empirical Bayes Selection Procedures Under the preceding described statistical model and the loss function, one can see that for the Bayes selection procedure δ_B , $R_1(G, \delta_{B1}) = \ldots = R_k(G, \delta_{Bk})$ and $R(G, \delta_B) = k R_1(G, \delta_{B1})$. Also, by the symmetric properties of the empirical Bayes selection procedures $\underline{\delta}^*$ and $\hat{\underline{\delta}}$, we have $R_1(G, \delta_1^*) = \ldots = R_k(G, \delta_k^*)$ and $R(G, \underline{\delta}^*) = k R_1(G, \delta_1^*)$, $R_1(G, \hat{\delta}_1) = \ldots = R_k(G, \hat{\delta}_k)$ and $R(G, \hat{\underline{\delta}}) = k R_1(G, \hat{\delta}_1)$. Therefore, $\rho(G, \hat{\varrho}^*) = [R_1(G, \delta_1^*) - R_1(G, \delta_{B1})]/R_1(G, \delta_{B1})$ and $\rho(G, \hat{\varrho}) = [R_1(G, \hat{\delta}_1) - R_1(G, \delta_{B1})]/R_1(G, \delta_{B1})$. Since $R_1(G, \delta_{B1})$ is a fixed positive value, to study the asymptotic optimality of the empirical Bayes selection procedures, it suffices to investigate the asymptotic behavior of $R_1(G, \delta_1^*) - R_1(G, \delta_{B1})$ and $R_1(G, \hat{\delta}_1) - R_1(G, \delta_{B1})$ for sufficiently large k. **Theorem 4.1** For the statistical model previously described in Section 2, assume that $E[|\Theta_i|] < \infty$ and a^* is a finite number. Then, the empirical Bayes selection procedures δ^* and $\hat{\delta}$ are asymptotically optimal in the sense that $\rho(G, \delta^*) \to 0$ and $\rho(G, \hat{\delta}) \to 0$ as $k \to \infty$. Proof: It is assumed that k is sufficiently large so that $a^* \in (-C_k^*, C_k^*)$, where $\{C_k^*\}$ is a sequence of increasing positive numbers such that $\lim_{k\to\infty} C_k^* = \infty$ as described in Section 3. By the finiteness of a^* and from (2.5''), (2.9), (3.4) and (3.7), $$R_{1}(G, \delta_{1}^{*}) - R_{1}(G, \delta_{B1})$$ $$= \int [\theta_{0} - \psi_{1}(x_{1})] E_{1}^{*} \{\delta_{1}^{*}(x_{1}, \tilde{X}(1)) - \delta_{B1}(x_{1})\} f(x_{1}) dx_{1}$$ $$= \int_{-C_{k}^{*}}^{a^{*}} [\theta_{0} - \psi_{1}(x_{1})] P\{\delta_{1}^{*}(x_{1}, \tilde{X}(1)) = 1, \delta_{B1}(x_{1}) = 0\} f(x_{1}) dx_{1}$$ $$+ \int_{a^{*}}^{C_{k}^{*}} [\psi_{1}(x_{1}) - \theta_{0}] P\{\delta_{1}^{*}(x_{1}, \tilde{X}(1)) = 0, \delta_{B1}(x_{1}) = 1\} f(x_{1}) dx_{1}.$$ $$(4.1)$$ Also, from (2.5''), (2.9), (3.5) and (3.9), $$R_1(G,\hat{\delta}_1)-R_1(G,\delta_{B1})$$ $$= \int_{-C_k^*}^{a^*} [\theta_0 - \psi_1(x_1)] P\{\hat{\delta}_1(x_1, X(1), W_k) = 1, \delta_{B1}(x_1) = 0\} f(x_1) dx_1$$ (4.2) $$+ \int_{a^*}^{C_k^*} [\psi_1(x_1) - \theta_0] P\{\hat{\delta}_1(x_1, X(1), W_k) = 0, \delta_{B1}(x_1) = 1\} f(x_1) dx_1.$$ From a corollary of Robbins (1964), to prove the asymptotic optimality of $\hat{\varrho}^*$ and $\hat{\varrho}$, it suffices to show that for each x_1 , and $\epsilon = 0, 1$, $$P\{\delta_1^*(x_1, X(1)) = \epsilon, \delta_{B1}(x_1) = 1 - \epsilon\} \to 0$$ and $$P\{\hat{\delta}_1(x_1, X(1), W_k) = \epsilon, \ \delta_{B1}(x_1) = 1 - \epsilon\} \to 0$$ as $k \to \infty$. Note that for each fixed $x_1, f_{1k}(x_1)$ and $f_{1k}^{(1)}(x_1)$ are consistent estimates of $f(x_1)$ and $f^{(1)}(x_1)$, respectively. Also, W_k is a consistent estimator of σ^2 . Hence, $T_{1k}^*(x_1)$ is a consistent estimator of $T_1(x_1)$ for the σ^2 known case, and $\hat{T}_{1k}(x_1)$ is a consistent estimator of $T_1(x_1)$ for the σ^2 unknown case. Therefore, $$\begin{split} &P\{\delta_1^*(x_1, X(1)) = 1, \delta_{B1}(x_1) = 0\} \\ =& P\{T_{1k}^*(x_1) \ge 0, \ T_1(x_1) < 0\} \to 0 \text{ as } k \to \infty, \text{ and} \\ &P\{\delta_1^*(x_1, X(1)) = 0, \delta_{B1}(x_1) = 1\} \\ =& P\{T_{1k}^*(x_1) < 0, T_1(x_1) \ge 0\} \to 0 \text{ as } k \to \infty. \end{split}$$ Similarly, $$P\{\hat{\delta}_1(x_1, X(1), W_k) = \epsilon, \ \delta_{B1}(x_1) = 1 - \epsilon\} \to 0 \text{ as } k \to \infty.$$ Hence the proof of the theorem is complete. ### 5. Rates of Convergence The following theorem gives the main results of the paper concerning rates of convergence of the empirical Bayes selection procedures. Theorem 5.1 For the statistical model described in Section 2, assume that $E[|\Theta_1|] < \infty$ and a^* is a finite number. - (a) If we take $h = c_1(k-1)^{-1/(2r+1)}$ and $C_k^* = c_2 h^{-1}$ for some fixed positive values c_1 and c_2 , then, $\rho(G, \hat{\delta}^*) = O(k^{-\frac{r-2}{2r+1}})$ and $\rho(G, \hat{\delta}) = O(k^{-\frac{r-2}{2r+1}})$. - (b) Furthermore, suppose that for some $1 < \alpha < 2$, and for some h > 0, (A1) $$\int \frac{|x_1|^{\alpha} M^{\alpha/2}(x_1, h)}{f^{\alpha-1}(x_1)} dx_1 < \infty$$ and (A2) $\int \frac{|x_1|^{\alpha} N^{\alpha}(x_1, h)}{f^{\alpha-1}(x_1)} dx_1 < \infty$ where $M(x_1, h)$ and $N(x_1, h)$ are defined in Lemma 6.3. If we take $h = (k-1)^{-1/(2r+1)}$ $h=(k-1)^{-1/(2r+1)}$, then, $\rho(G, \delta^*)=O(k^{-\frac{\alpha(r-1)}{2r+1}})$ and $\rho(G, \hat{\delta})=O(k^{-\frac{\alpha(r-1)}{2r+1}})$. Proof: We provide proof of the theorem for the empirical Bayes selection procedure δ^* only. The proof for the empirical Bayes selection procedure $\hat{\delta}$ is analogous to that of δ^* and hence is omitted here. Also, assume that k is large enough so that $a^*\in (-C_k^*,C_k^*)$. From (4.1) and Lemma 6.1 - 6.3, by noting that $[\psi_1(x_1) - \theta_0]f(x_1) = T_1(x_1)$, we have, $$R_1(G, \delta_1^*) - R_1(G, \delta_{B1})$$ $$\leq \int_{-C_k^*}^{C_k^*} E[|T_{1k}^*(x_1) - T_1(x_1)|^{\alpha}] / |T_1(x_1)|^{\alpha - 1} dx_1$$ $$\leq \frac{b_1(\alpha)}{[(k-1)h^3]^{\alpha/2}} \int_{-C_k^*}^{C_k^*} [M(x_1,h)]^{\alpha/2} / |T_1(x_1)|^{\alpha-1} dx_1$$ + $$b_1(\alpha)h^{\alpha(r-1)} \int_{-C_k^*}^{c_k^*} N^{\alpha}(x_1,b) / |T_1(x_1)|^{\alpha-1} dx_1$$ + $$\frac{b_2(\alpha)}{[(k-1)h]^{\alpha/2}} \int_{-C_k^*}^{C_k^*} |x_1 - \theta_0|^{\alpha} M^{\alpha/2}(x_1, h) / |T_1(x_1)|^{\alpha-1} dx_1$$ $$+ b_{2}(\alpha)h^{\alpha r} \int_{-C_{k}^{*}}^{C_{k}^{*}} |x_{1} - \theta_{0}|^{\alpha} N^{\alpha}(x_{1}, h) / |T_{1}(x_{1})|^{\alpha - 1} dx_{1}.$$ $$(5.1)$$ Since $f(x_1) = \int \frac{\sqrt{m}}{\sqrt{2\pi\sigma}} e^{-\frac{m(x_1-\theta)^2}{2\sigma^2}} dG(\theta) \le \frac{\sqrt{m}}{\sqrt{2\pi\sigma}} = B_4$ for all x_1 , $$0 \le M(x_1, h) = \int_0^1 f(x_1 - vh) dv \le B_4$$ (5.2) for all x_1 and h. Also, $$\left. \frac{\partial^r f(t)}{\partial t^r} \right|_{t = x_1 - hw} = \int \left. \frac{\sqrt{m}}{\sqrt{2\pi}\sigma} \right. \left. e^{-\frac{m(x_1 - hw - \theta)^2}{2\sigma^2}} \left[\sum_{j=0}^r a_j (x_1 - hw - \theta)^j \right] dG(\theta)$$ where $a_j, j = 0, \ldots, r$, are finite numbers. Therefore, $\left| \left[\frac{\partial^r f(t)}{\partial t^r} \right|_{t = x_1 - hw} \right] \right| \leq B_5$ for some positive number B_5 for all x_1, w and h and hence, for all x_1 and h $$N(x_1, h) \le B_5. \tag{5.3}$$ For $\alpha = 1$, substituting the inequalities of (5.2) and (5.3) into (5.1) we obtain, $$R_{1}(G, \delta_{1}^{*}) - R_{1}(G, \delta_{B1})$$ $$\leq 2b_{1}(1)B_{4}^{1/2} C_{k}^{*} / [(k-1)h^{3}]^{1/2} + 2b_{1}(1)B_{5} C_{k}^{*} h^{r-1}$$ $$+ b_{2}(1)B_{4}^{1/2} \int_{-C_{k}^{*}}^{C_{k}^{*}} |x_{1} - \theta_{0}| dx_{1} / [(k-1)h]^{1/2}$$ $$+ b_{2}(1)B_{5} h^{r} \int_{-C_{k}^{*}}^{C_{k}^{*}} |x_{1} - \theta_{0}| dx_{1}$$ $$\leq 2b_{1}(1)B_{4}^{1/2} C_{k}^{*} / [(k-1)h^{3}]^{1/2} + 2b_{1}(1)B_{5} C_{k}^{*} h^{r-1}$$ $$+ b_{2}(1)B_{4}^{1/2} \left\{ 2|\theta_{0}|C_{k}^{*} + \frac{C_{k}^{*2}}{2} \right\} / [(k-1)h]^{1/2}$$ $$+ b_{2}(1)B_{5} h^{r} \left\{ 2|\theta_{0}|C_{k}^{*} + \frac{C_{k}^{*2}}{2} \right\}$$ $$= O(C_{k}^{*} / [(k-1)h^{3}]^{1/2}) + O(C_{k}^{*} h^{r-1})$$ $$+ O(C_{k}^{*2} / [(k-1)h]^{1/2}) + O(C_{k}^{*2} h^{r}).$$ (5.4) Thus, if we let $h = c_1(k-1)^{-1/(2r+1)}$ and $C_k^* = c_2 h^{-1}$ where c_1 and c_2 are positive constants, then, from (5.4), $R_1(G, \delta_1^*) - R_1(G, \delta_{B1}) = O(k^{-\frac{r-2}{2r+1}})$. This completes the proof of part (a). For each k, let $I_k^c = [-C_k^*, a^* - c_0) \cup (a^* + c_0, C_k^*]$. Since $T_1(x_1) = [\psi_1(x_1) - \theta_0] f(x_1)$, by Lemma 6.4, for $x_1 \in I$, $|T_1(x_1)| \ge |x_1 - a^*| f(x_1) b_3$, and for $x_1 \in I_k^c$, $|T_1(x_1)| \ge f(x_1) b_4$. Combining these inequalities with (5.1) together, we obtain $$R_1(G,\delta_1^*) - R_1(G,\delta_{B1})$$ $$\leq \frac{b_{1}(\alpha)E_{1}}{b_{3}^{\alpha-1}((k-1)h^{3})^{\alpha/2}} + \frac{b_{1}(\alpha)E_{2}}{b_{4}^{\alpha-1}((k-1)h^{3})^{\alpha/2}} + \frac{b_{1}(\alpha)h^{\alpha(r-1)}E_{3}}{b_{3}^{\alpha-1}} + \frac{b_{1}(\alpha)h^{\alpha(r-1)}E_{4}}{b_{4}^{\alpha-1}} + \frac{b_{2}(\alpha)E_{5}}{((k-1)h)^{\alpha/2}b_{3}^{\alpha-1}} + \frac{b_{2}(\alpha)E_{6}}{((k-1)h)^{\alpha/2}b_{4}^{\alpha-1}} + \frac{b_{2}(\alpha)h^{\alpha r}E_{8}}{b_{4}^{\alpha-1}} + \frac{b_{2}(\alpha)h^{\alpha r}E_{8}}{b_{4}^{\alpha-1}}, \qquad (5.5)$$ where $$E_{1} = \int_{I} \frac{M^{\alpha/2}(x_{1}, h)}{[|x_{1} - a^{*}| f(x_{1})]^{\alpha - 1}} dx_{1},$$ $$E_{2} = \int_{I_{k}^{c}} \frac{M^{\alpha/2}(x_{1}, h)}{f^{\alpha - 1}(x_{1})} dx_{1},$$ $$E_{3} = \int_{I} \frac{N^{\alpha}(x_{1}, h)}{[|x_{1} - \alpha^{*}| f(x_{1})]^{\alpha - 1}} dx_{1},$$ $$E_{4} = \int_{I_{k}^{c}} \frac{N^{\alpha}(x_{1}, h)}{f^{\alpha - 1}(x_{1})} dx_{1},$$ $$E_{5} = \int_{I} \frac{|x_{1} - \theta_{0}|^{\alpha} M^{\alpha/2}(x_{1}, h)}{[|x_{1} - a^{*}| f(x_{1})]^{\alpha - 1}} dx_{1},$$ $$E_{6} = \int_{I_{k}^{c}} \frac{|x_{1} - \theta_{0}|^{\alpha} M^{\alpha/2}(x_{1}, h)}{f^{\alpha - 1}(x_{1})} dx_{1},$$ $$E_{7} = \int_{I} \frac{|x_{1} - \theta_{0}|^{\alpha} N^{\alpha}(x_{1}, h)}{[|x_{1} - a^{*}| f(x_{1})]^{\alpha - 1}} dx_{1},$$ and $$E_8 = \int_{I_k^c} \frac{|x_1 - \theta_0|^{\alpha} N^{\alpha}(x_1, h)}{f^{\alpha - 1}(x_1)} dx_1.$$ Since I is a bounded interval and $0 \le M(x_1,h) \le B_4$, $0 \le N(x_1,h) \le B_5$ for all x_1 and h, one can see that for $1 < \alpha < 2$, $0 \le E_i < \infty, i = 1,3,5,7$. Also, under the assumptions (A1) and (A2), $0 \le E_i < \infty, i = 2, 4, 6, 8$. Therefore, $$R_1(G, \delta_1^*) - R_1(G, \delta_{B1}) = O(((k-1)h^3)^{-\alpha/2}) + O(h^{\alpha(r-1)}).$$ If we take $h = (k-1)^{-\frac{1}{2r+1}}$, then $R_1(G, \delta_1^*) - R_1(G, \delta_{B1}) = O(k^{-\frac{\alpha(r-1)}{2r+1}})$. Hence, this completes the proof of part (b). #### Remarks - (a) In Theorem 5.1(a), we have demonstrated that under the very mild conditions that $E[|\Theta_1|] < \infty$ and a^* is finite, the relative regret risk converges to zero with a rate of order $O(k^{-\frac{r-2}{2r+1}})$ where r > 2 is a positive integer, involving in the choice of the kernels k_0 and k_1 , see (3.1) and (3.2). According to (3.1) and (3.2), there is no restriction about the choice of the value r. Therefore, we may choose r as large as possible, so that the rate of convergence of the relative regret risk may have an order close to $O(k^{-1/2})$. - (b) Though under the assumptions A1 and A2, the empirical Bayes selection procedure δ^* may have a better convergence rate, it is possible that the assumptions A1 and/or A2 may not hold for any $1 < \alpha < 2$ and any 0 < h < 1. For example, consider a prior distribution with density $g(\theta)$ where $$g(\theta) = \begin{cases} \frac{1}{4} & \text{if } |\theta| \le 1, \\ \\ \frac{1}{4\theta^2} & \text{if } |\theta| > 1. \end{cases}$$ Then, one can see that f(x) is symmetric about the point 0 and f(x) is decreasing in x for $x \geq 0$. Hence, for x > vh > 0, $M(x,h) = \int_0^1 f(x-vh)dx \geq f(x)$. Also, as x > 2, $f(x) \geq \frac{c}{x^2}$ for some c > 0. Therefore, $$\int_{-\infty}^{\infty} \frac{|x|^{\alpha} M^{\alpha/2}(x)}{f^{\alpha-1}(x)} dx \ge \int_{2}^{\infty} \frac{x^{\alpha} M^{\alpha/2}(x,h)}{f^{\alpha-1}(x)} dx$$ $$\ge \int_{2}^{\infty} x^{\alpha} f^{1-\alpha/2}(x) dx$$ $$\geq \int_{2}^{\infty} x^{\alpha} \left(\frac{c}{x^{2}}\right)^{1-\alpha/2} dx$$ $$= c^{1-\alpha/2} \int_{2}^{\infty} x^{2\alpha-2} dx$$ $$= \infty \text{ since } 1 < \alpha < 2.$$ Therefore A1 does not hold in this case. (c) We provide an example in which both the assumptions A1 and A2 hold for any $1 < \alpha < 2$. Assume that $\Theta_1 \sim N(0, \tau^2)$. Then, marginally $X_1 \sim N(0, q)$ where $q = \frac{\sigma^2}{m} + \tau^2$. We need to verify that $$\int \frac{|x|^{\alpha} \ M^{\alpha/2}(x,h)}{f^{\alpha-1}(x)} dx < \infty \text{ and } \int \frac{|x|^{\alpha} \ N^{\alpha}(x,h)}{f^{\alpha-1}(x)} dx < \infty.$$ Since $f(x) = \frac{1}{\sqrt{2\pi q}} e^{-\frac{x^2}{2q}}$, $$\frac{M(x,h)}{f(x)} = \int_{v=0}^{1} e^{\frac{2vhx - v^2h^2}{2q}} dv \le \begin{cases} 1 & \text{if } x < 0, \\ e^{\frac{hx}{q}} & \text{if } x > 0. \end{cases}$$ Hence, $$\int \frac{|x|^{\alpha} \ M^{\alpha/2}(x)}{f^{\alpha-1}(x)} dx \leq \int_{-\infty}^{0} \ |x|^{\alpha} f^{1-\alpha/2}(x) dx + \int_{0}^{\infty} x^{\alpha} \ f^{1-\alpha/2} \ (x) e^{\frac{hx}{q}} \ dx < \infty.$$ Also, $$\left. \frac{\partial^r f(t)}{\partial t^r} \right|_{t=x-hw} = \frac{1}{\sqrt{2\pi q}} e^{-\frac{(x-hw)^2}{2q}} \left[\sum_{j=0}^r a_j (x-hw)^j \right]$$ for some real values $a_j, j = 0, 1, \ldots, r$. Then, $$\frac{\left.\frac{\partial^r f(t)}{\partial t^r}\right|_{t=x-hw}}{f(x)} = e^{\frac{2hwx-h^2w^2}{2q}} \left[\sum_{j=0}^r a_j(x-hw)^j\right].$$ Hence, $$\frac{N(x,h)}{f(x)} \le e^{\frac{h|x|}{q}} \sup_{0 \le w \le 1} \sum_{j=0}^{r} |a_j| |x - hw|^{j}.$$ Therefore, $$\int \frac{|x|^{\alpha} N^{\alpha}(x,h)}{f^{\alpha-1}(x)} dx \le \sum_{j=0}^{r} \sup_{0 \le w \le 1} \int |x|^{\alpha} f(x) |a_{j}| |x - hw|^{j} e^{\frac{h|x|}{q}} dx < \infty.$$ That is, both the assumptions A1 and A2 hold. #### 6. Useful Lemmas The following lemmas are useful for presenting a concise proof of Theorem 5.1. **Lemma 6.1** (a) For $x_1 < a^*$ and $\alpha > 0$, $$P\{\delta_1^*(x_1, X(1)) = 1\} \le E[|T_{1k}^*(x_1) - T_1(x_1)|^{\alpha}] / |T_1(x_1)|^{\alpha}.$$ (b) For $x_1 > a^*$ and $\alpha > 0$. $$P\{\delta_1^*(x_1, X(1)) = 0\} \le E[|T_{1k}^*(x_1) - T_1(x_1)|^{\alpha}] / |T_1(x_1)|^{\alpha}.$$ Proof: For $x_1 < a^*, T_1(x) = \frac{\sigma^2}{m} f^{(1)}(x_1) + (x_1 - \theta_0) f(x_1) < 0$. Then by the definition of the empirical Bayes selection procedure δ^* and by Markov inequality, $$\begin{split} P\{\delta_1^*(x_1, \Breve{X}(1)) &= 1\} = & P\{T_{1k}^*(x_1) \geq 0\} \\ \\ &= & P\{T_{1k}^*(x_1) - T_1(x_1) \geq -T_1(x_1)\} \\ \\ &\leq & E[|T_{1k}^*(x_1) - T_1(x_1)|^{\alpha}] \ / \ |T_1(x_1)|^{\alpha}. \end{split}$$ Part (b) can also be obtained in a similar way. **Lemma 6.2** For $0 < \alpha \le 2$, for each fixed x_1 , $$E[|T_{1k}^*(x_1) - T_1(x_1)|^{\alpha}]$$ $$\leq C_{\alpha}^2 \left(\frac{\sigma^2}{m}\right)^{\alpha} \{ \operatorname{Var}^{\alpha/2}(f_{1k}^{(1)}(x_1)) + |Ef_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha} \}$$ $$+ C_{\alpha}^2 |x_1 - \theta_0|^{\alpha} \{ \operatorname{Var}^{\alpha/2}(f_{1k}(x_1)) + |Ef_{1k}(x_1) - f(x_1)|^{\alpha} \},$$ where $$C_{\alpha} = \begin{cases} 1 & \text{if } 0 < \alpha \le 1, \\ \\ 2^{\alpha - 1} & \text{if } 1 < \alpha \le 2. \end{cases}$$ Proof: By the definitions of $T_{1k}^*(x_1)$ and $T_1(x_1)$ and by C_r -inequality, $$E[|T_{1k}^*(x_1) - T_1(x_1)|^{\alpha}]$$ $$= E\left[\left|\left[\frac{\sigma^{2}}{m} f_{1k}^{(1)}(x_{1}) + (x_{1} - \theta_{0})f_{1k}(x_{1})\right] - \left[\frac{\sigma^{2}}{m} f^{(1)}(x_{1}) + (x_{1} - \theta_{0})f(x_{1})\right]\right|^{\alpha}\right]$$ $$\leq C_{\alpha}\left(\frac{\sigma^{2}}{m}\right)^{\alpha} E\left[\left|f_{1k}^{(1)}(x_{1}) - f^{(1)}(x_{1})\right|^{\alpha}\right]$$ $$+ C_{\alpha}\left|x_{1} - \theta_{0}\right|^{\alpha} E\left[\left|f_{1k}(x_{1}) - f(x_{1})\right|^{\alpha}\right].$$ $$(6.1)$$ Again, by C_r -inequality, for $0 < \alpha \le 2$, $$E[|f_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha}]$$ $$= E[|f_{1k}^{(1)}(x_1) - Ef_{1k}^{(1)}(x_1) + Ef_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha}]$$ $$\leq C_{\alpha}E[|f_{1k}^{(1)}(x_1) - Ef_{1k}^{(1)}(x_1)|^{\alpha}] + C_{\alpha}|Ef_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha}$$ $$\leq C_{\alpha} \operatorname{Var}^{\alpha/2}(f_{1k}^{(1)}(x_1)) + C_{\alpha}|Ef_{1k}^{(1)}(x_1) - f^{(1)}(x_1)|^{\alpha},$$ (6.2) and $$E[|f_{1k}(x_1) - f(x_1)|^{\alpha}]$$ $$\leq C_{\alpha} E[|f_{1k}(x_1) - Ef_{1k}(x_1)|^{\alpha}] + C_{\alpha} |Ef_{1k}(x_1) - f(x_1)|^{\alpha}$$ (6.3) $$\leq C_{\alpha} \operatorname{Var}^{\alpha/2}(f_{1k}(x_1)) + C_{\alpha}|Ef_{1k}(x_1) - f(x_1)|^{\alpha}.$$ Substituting (6.2) and (6.3) into (6.1) yields the result of the lemma. **Lemma 6.3** For each fixed x_1 , (a) $$Var(f_{1k}(x_1)) \le B_3^2 M(x_1, h) / [(k-1)h],$$ (b) $$\operatorname{Var}(f_{1k}^{(1)}(x_1)) \leq B_3^2 M(x_1, h) / [(k-1)h^3],$$ (c) $$|Ef_{1k}(x_1) - f(x_1)| \le B_3 h^r N(x_1, h)$$, (d) $$|Ef_{1k}^{(1)}(x_1) - f^{(1)}(x_1)| \le B_3 h^{r-1} N(x_1, h),$$ (e) $$E[|T_{1k}^*(x_1) - T_1(x_1)|^{\alpha}]$$ $$\leq b_1(\alpha)\{[M(x_1,h) / ((k-1)h^3)]^{\alpha/2} + [h^{r-1}N(x_1,h)]^{\alpha}\}$$ $$+ b_2(\alpha)|x_1 - \theta_0|^{\alpha}\{[M(x_1,h) / ((k-1)h)]^{\alpha/2} + [h^r N(x_1,h)]^{\alpha}\},$$ where $$b_1(\alpha) = C_{\alpha}^2 B_3^{\alpha} \left(\frac{\sigma^2}{m}\right)^{\alpha}$$, $b_2(\alpha) = C_{\alpha}^2 B_3^{\alpha}$, $M(x_1, h) = \int_0^1 f(x_1 - vh) dv$, and $N(x_1, h) = \sup_{0 \le w \le 1} \left| \left[\frac{\partial^r f(t)}{\partial t^r} \right|_{t=x_1 - hw} \right] \right|$. Proof: (a) Var $$(f_{1k}(x_1)) = \frac{1}{(k-1)h^2} \operatorname{Var}(k_0(\frac{x_1 - X_2}{h}))$$ $$\leq \frac{1}{(k-1)h^2} E[k_0^2(\frac{x_1 - X_2}{h})]$$ $$= \frac{1}{(k-1)h} \int_0^1 k_0^2(v) f(x_1 - vh) dv$$ $$\leq \frac{B_3^2}{(k-1)h} \int_0^1 f(x_1 - vh) dv$$ $$= \frac{B_3^2}{(k-1)h} M(x_1, h).$$ Part (b) can be obtained in a similar way. (c) $$Ef_{1k}(x_1) = \frac{1}{h} E k_0(\frac{x_1 - X_2}{h}) = \int_0^1 k_0(w) f(x_1 - hw) dw.$$ Since $\int_0^1 k_0(x)dw = 1$, hence, by the property of k_0 , $$|Ef_{1k}(x_1) - f(x_1)| = \left| \int_0^1 k_0(w) [f(x_1 - hw) - f(x_1)] dw \right|$$ $$= \left| \int_0^1 k_0(w) \left[\frac{\partial^r f(t)}{\partial t^r} \Big|_{t=x_1 - hw^*} \right] (-hw)^r dw \right|$$ where $0 < w^* < w$ $$\leq B_3 h^r \sup_{0 \le w \le 1} \left| \left[\frac{\partial^r f(t)}{\partial t^r} \Big|_{t=x_1 - hw} \right] \right|$$ $$= B_3 h^r N(x_1, h).$$ The proof of part (d) can be obtained in a way similar to part (c). Finally, part (e) is obtained by plugging the results of parts (a)-(d) into the inequality in Lemma 6.2. For a positive constant c_0 , define interval $I = [a^* - c_0, a^* + c_0]$. Note that $\psi_1(x_1) = \int \theta \ e^{\frac{m\theta x_1}{\sigma^2} - \frac{m\theta^2}{2\sigma^2}} dG(\theta) \ / \int e^{\frac{m\theta x_1}{\sigma^2} - \frac{m\theta^2}{2\sigma^2}} dG(\theta)$. Hence, $$\psi_{1}^{(1)}(x_{1}) = \frac{\frac{m}{\sigma^{2}} \left\{ \int \theta^{2} e^{\frac{m\theta x_{1}}{\sigma^{2}} - \frac{m\theta^{2}}{2\sigma^{2}}} dG(\theta) \int e^{\frac{m\theta x_{1}}{\sigma^{2}} - \frac{m\theta^{2}}{2\sigma^{2}}} dG(\theta) - \left[\int \theta e^{\frac{m\theta x_{1}}{\sigma^{2}} - \frac{m\theta^{2}}{2\sigma^{2}}} dG(\theta) \right]^{2} \right\}}{\left[\int e^{\frac{m\theta x_{1}}{\sigma^{2}} - \frac{m\theta^{2}}{2\sigma^{2}}} dG(\theta) \right]^{2}},$$ which is continuous in x_1 and positive for all x_1 since G is nondegenerate. #### Lemma 6.4 - (a) Let $b_3 = \inf\{\psi_1^{(1)}(x_1)|x_1 \in I\}$. Then $b_3 > 0$. - (b) For any $x_1 \in I, |\psi_1(x_1) \theta_0| \ge |x_1 a^*|b_3$. - (c) For any $x_1 \notin I$, $|\psi_1(x_1) \theta_0| \ge b_4$ for some $b_4 > 0$. Proof: (a) Since $\psi_1^{(1)}(x_1)$ is continuous in x_1 on the compact interval I, there exists an $x^* \in I$ such that $\psi_1^{(1)}(x^*) = b_3$. Also, note that $\psi_1^{(1)}(x^*)$ can also be viewed as the variance of some non-degenerate distribution. Hence $b_3 > 0$. (b) By the definition of $a^*, \psi_1(a^*) = \theta_0$. By mean-value theorem, for $x_1 \in I$. $$|\psi_1(x_1) - \theta_0| = |\psi_1(x_1) - \psi_1(a^*)|$$ $$= |(x_1 - a^*)\psi_1^{(1)}(x_1^*)|$$ $$\geq |x_1 - a^*|b_3,$$ where x_1^* is a point between x_1 and a^* . (c) Note that $\psi_1(x_1) - \theta_0$ is strictly increasing in x_1 and $\psi_1(a^*) - \theta_0 = 0$. So, $|\psi_1(x_1) - \theta_0| \ge \min(|\psi_1(a^* - c_0) - \theta_0|, |\psi_1(a^* + c_0) - \theta_0|) \equiv b_4 > 0$ for all $x_1 \notin I$. #### References - Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Amer. Statist. Assoc., 50, 1096-1121. - Gupta, S. S. and Miescke, K. J. (1985). Minimax multiple t-test for comparing k normal populations with a control. J. Statist. Plann. Inference, 12, 161-169. - Gupta, S. S. and Sobel, M. (1958). On selecting a subset which contains all populations better than a standard. *Ann. Math. Statist.*, 29, 235-244. - Lehmann, E. L. (1961). Some Model I problem of selection. Ann. Math. Statist., 32, 990-1012. - Miescke, K. J. (1981). Γ-minimax selection procedures in simultaneous testing problems. Ann. Statist., 9, 215-220. - Randles, R. H. and Hollander, M. (1971). Γ-minimax selection procedures in treatments versus control problems. *Ann. Math. Statist.*, **42**, 330-341. - Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. Ann. Math. Statist., 35, 1-20. - Singh, R. S. (1977). Applications of estimators of a density and its derivatives to certain statistical problems. J. Royal Statist. Soc., B, 39, 357-363. - Singh, R. S. (1979). Empirical Bayes estimation in Lebesgue-exponential families with rates near the best possible rate. *Ann. Statist.*, 7, 890-902. - Spjøtvoll, E. (1972). On the optimality of some multiple comparison procedures. Ann. Math. Statist., 43, 398-411. - Tong, Y. L. (1969). On partitioning a set of normal populations by their locations with respect to a control. *Ann. Math. Statist.*, 40, 1300-1324. | Public recording burden for this collection of information is settinated to average 1 hour per response, including the time for review gathering and maintaining the data needed, and completing and reviewing the collection of information, including suggestions for reducing this pruree; in the collection of information. | | | Form Approved
OMB NO. 0704-0188 | |---|---|--|---| | gamening and maintaining the data in
collection of information, including st
Davis Highway, Suite 1204, Arlington
1. AGENCY USE ONLY (Leave | n. VA 22202-4302, and to the Office of Managemen | meadquarters Services. Directorate for interest and Budget, Paperwork Reduction Project | ormation Coerations and Reports, 1215 Jefferson
at (0704-0188), Washington, DC 20503. | | 4. TITLE AND SUBTITLE | May 1996 | 3. REPORT TYPE A | ND DATES COVERED
Report; May 1996 | | | imultanoona Calaati. D | | 5. FUNDING NUMBERS | | Empirical Bayes Simultaneous Selection Procedures for Comparing Normal Populations with a Standard | | | DAAH04-95-01-0165 | | 6. AUTHOR(S) | | | DAG104-95-01-0165 | | Shanti S. Gupta ar | nd TaChen Liang | | | | 7. PERFORMING ORGANIZATIO | ON NAMES(S) AND ADDRESS(ES) | | | | Purdue University | MANUES(S) AND ADDRESS(ES) | | 8. PERFORMING ORGANIZATION REPORT NUMBER | | West Lafayette, IN | J 47907 1700 | .] | | | most narry seed, in | 4/90/-1399 | · | Technical Report #96-25C | | 9. SPONSORING / MONITORIN | IG AGENCY NAME(S) AND ADDRES | | | | U.S. Army Research Off
P.O. Box 12211 | | S(ES) | 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER | | Research Triangle Park. | NC 27709-2211 | | | | | | / | 9R0 32922.3-MA | | 11. SUPPLEMENTARY NOTES | | | | | The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation. | | | | | 12a. DISTRIBUTION / AVAILABIL | ITY STATEMENT | | 2 b. DISTRIBUTION CODE | | Approved for public release | ase: distribution unlimited. | | | | 12 ADSTDAGT (A | | | | | 13. ABSTRACT (Maximum 200 wo | ords) | | | | approach. The respection procedure mild condition, the of convergence of in the selection procedure. | we derive statistical selection or "bad" ones, respectively elative regret risk of a select establish the asymptotic res and investigate the asymptotic order close to $O(k^{-\frac{1}{2}})$ when the convergence of order 2. | rely, using the nonpara
ection procedure is us
optimality of the pro-
sociated rates of conv
s selection procedures
here k is the number of
ag assumptions, the en | metric empirical Bayes and as a measure of its oposed empirical Bayes ergence. Under a very are shown to have rates of populations involved appirical Bayes selection | | | | | | | 14. SUBJECT TERMS | | | 15. NUMBER IF PAGES | | Asymptotically optimal, comparison with astandard, empirical Bayes, rate of convergence, simultaneous selection | | | 21
16. PRICE CODE | | 7. SECURITY CLASSIFICATION | | | | | OR REPORT
UNCLASSIFIED | 18. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURITY CLASSIFICAT
OF ABSTRACT | ON 20. LIMITATION OF ABSTRACT | | VSN 7540-01-280-5500 | UNCLASSIFIED | UNCLASSIFIED | UL |